Wikipedia
Search results
Saturday, 5 September 2015
New Features in Machine Learning Pipelines in Spark 1.4
Spark 1.2 introduced Machine Learning (ML) Pipelines to facilitate the creation, tuning, and inspection of practical ML workflows. Spark’s latest release, Spark 1.4, significantly extends the ML library. In this post, we highlight several new features in the....[More]
ML Pipelines: A New High-Level API for MLlib
MLlib’s goal is to make practical machine learning (ML) scalable and easy. Besides new algorithms and performance improvements that we have seen in each release, a great deal of time and effort has been spent on making MLlib easy. Similar to Spark Core, MLlib provides APIs in three languages: Python, Java, and Scala, along with user guide and example code, to ease the learning curve for users...[More]
Subscribe to:
Comments (Atom)